Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.048
Filtrar
1.
Carbohydr Polym ; 335: 122063, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616074

RESUMO

The surface properties of cardiovascular biomaterials play a critical role in their biological responses. Although bacterial nanocellulose (BNC) materials have exhibited potential applications in cardiovascular implants, the impact of their surface characteristics on biocompatibility has rarely been studied. This study investigated the mechanism for the biocompatibility induced by the physicochemical properties of both sides of BNC. With greater wettability and smoothness, the upper BNC surface reduced protein adsorption by 25 % compared with the lower surface. This prolonged the plasma re-calcification time by 14 % in venous blood. Further, compared with the lower BNC surface, the upper BNC surface prolonged the activated partial thromboplastin time by 5 % and 4 % in arterial and venous blood, respectively. Moreover, the lower BNC surface with lesser rigidity, higher roughness, and sparser fiber structure promoted cell adhesion. The lower BNC surface enhanced the proliferation rate of L929 and HUVECs cells by 15 % and 13 %, respectively, compared with the upper BNC surface. With lesser stiffness, the lower BNC surface upregulated the expressions of CD31 and eNOS while down-regulating the ICAM-1 expression - This promoted the proliferation of HUVECs. The findings of this study will provide valuable insights into the design of blood contact materials and cardiovascular implants.


Assuntos
Materiais Biocompatíveis , Líquidos Corporais , Humanos , Adsorção , Materiais Biocompatíveis/farmacologia , Calcificação Fisiológica , Células Endoteliais da Veia Umbilical Humana
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612610

RESUMO

This prospective study aimed to assess the feasibility of chitosan biomaterial and subcutaneous gel implantation in an ovine model, with implications for women with genital prolapse. Twenty-four ewes were divided into four groups (n = 6 per group): chitosan type B, chitosan type C, chitosan unmodified injections, and polypropylene mesh. Ovine models were chosen due to their morphological resemblance to human reproductive organs. Animals were sacrificed after 90 days for macroscopic, pathomorphological, and immunohistochemical analysis. In the chitosan type B group, IL-6 and IL-10 levels decreased after 28 days, while chitosan type C and injection groups exhibited higher IL-6 than IL-10 levels. The polypropylene group displayed the highest IL-6 and lowest IL-10 levels. Histological examination of the polypropylene group revealed no degenerative changes or inflammation, whereas chitosan injection induced local inflammation. Other groups exhibited no degenerative changes. Ewes implanted with chitosan displayed reduced inflammation compared to polypropylene-implanted ewes. Chitosan implantation facilitated vaginal tissue healing, in contrast to polypropylene mesh, which led to extrusion. While chitosan holds promise as an alternative to polypropylene mesh, further research is imperative for comprehensive evaluation. This study suggests the potential of a chitosan biomaterial in pelvic organ prolapse treatment, warranting additional investigation.


Assuntos
Quitosana , Hemostáticos , Prolapso de Órgão Pélvico , Ovinos , Animais , Feminino , Humanos , Interleucina-10 , Interleucina-6 , Polipropilenos , Estudos Prospectivos , Prolapso de Órgão Pélvico/cirurgia , Materiais Biocompatíveis/farmacologia , Inflamação , Vagina
3.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612828

RESUMO

Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.


Assuntos
Matriz Extracelular Descelularizada , Envelhecimento da Pele , Humanos , Idoso , Materiais Biocompatíveis/farmacologia , Hidrogéis , Colágeno
4.
Nat Commun ; 15(1): 3283, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637507

RESUMO

While poly(ethylene glycol) (PEG) hydrogels are generally regarded as biologically inert blank slates, concerns over PEG immunogenicity are growing, and the implications for tissue engineering are unknown. Here, we investigate these implications by immunizing mice against PEG to stimulate anti-PEG antibody production and evaluating bone defect regeneration after treatment with bone morphogenetic protein-2-loaded PEG hydrogels. Quantitative analysis reveals that PEG sensitization increases bone formation compared to naive controls, whereas histological analysis shows that PEG sensitization induces an abnormally porous bone morphology at the defect site, particularly in males. Furthermore, immune cell recruitment is higher in PEG-sensitized mice administered the PEG-based treatment than their naive counterparts. Interestingly, naive controls that were administered a PEG-based treatment also develop anti-PEG antibodies. Sex differences in bone formation and immune cell recruitment are also apparent. Overall, these findings indicate that anti-PEG immune responses can impact tissue engineering efficacy and highlight the need for further investigation.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Feminino , Masculino , Camundongos , Animais , Materiais Biocompatíveis/farmacologia , Osteogênese , Regeneração Óssea , Polietilenoglicóis/farmacologia , Hidrogéis/farmacologia
5.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611887

RESUMO

This study aimed to create new composite materials based on diatomite-a non-organic porous compound-through its surface modification with bioactive organic compounds, both synthetic and natural. Chloramphenicol, tetrahydroxymethylglycoluril and betulin were used as modifying substances. Composite materials were obtained by covering the diatomite surface with bioactive substance compounds as a solution and material dispersion in it. The materials were characterized by IR spectroscopy, SEM and X-ray photoelectron spectroscopy. For the biocomposites, the hemolytic effect, plasma proteins' adsorption on the surface and the antibacterial activity of the obtained materials were studied. Results show that the obtained materials are promising for medicine and agriculture.


Assuntos
Antibacterianos , Cloranfenicol , Antibacterianos/farmacologia , Terra de Diatomáceas/farmacologia , Adsorção , Materiais Biocompatíveis/farmacologia
6.
Sci Rep ; 14(1): 8025, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580807

RESUMO

The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Materiais Biocompatíveis/farmacologia , Lipopolissacarídeos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/farmacologia , Staphylococcus epidermidis , Puromicina
7.
Sci Rep ; 14(1): 7505, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553565

RESUMO

Addressing the increasing drug resistance in pathogenic microbes, a significant threat to public health, calls for the development of innovative antibacterial agents with versatile capabilities. To enhance the antimicrobial activity of non-toxic biomaterials in this regard, this study focuses on novel, cost-effective chitosan (CS)-based hydrogels, crosslinked using gelatin (GEL), formaldehyde, and metallic salts (Ag+, Cu2+, and Zn2+). These hydrogels are formed by mixing CS and GEL with formaldehyde, creating iminium ion crosslinks with metallic salts without hazardous crosslinkers. Characterization techniques like FTIR, XRD, FESEM, EDX, and rheological tests were employed. FTIR analysis showed metal ions binding to amino and hydroxyl groups on CS, enhancing hydrogelation. FESEM revealed that freeze-dried hydrogels possess a crosslinked, porous structure influenced by various metal ions. Antibacterial testing against gram-negative and gram-positive bacteria demonstrated significant bacterial growth inhibition. CS-based hydrogels containing metal ions showed reduced MIC and MBC values against Staphylococcus aureus (0.5, 8, 16 µg/mL) and Escherichia coli (1, 16, 8 µg/mL) for CS-g-GEL-Ag+, CS-g-GEL-Cu2+, and CS-g-GEL-Zn2+. MTT assay results confirmed high biocompatibility (84.27%, 85.24%, 84.96% viability at 10 µg/mL) for CS-based hydrogels towards HFF-1 cells over 48 h. Therefore, due to their non-toxic nature, these CS hydrogels are promising for antibacterial applications.


Assuntos
Quitosana , Quitosana/farmacologia , Quitosana/química , Gelatina/farmacologia , Gelatina/química , Porosidade , Sais , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Metais , Formaldeído , Hidrogéis/farmacologia , Hidrogéis/química , Íons
8.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542232

RESUMO

Chitosan (CS) is a polysaccharide obtainable by the deacetylation of chitin, which is highly available in nature and is consequently low-cost. Chitosan is already used in the biomedical field (e.g., guides for nerve reconstruction) and has been proposed as a biomaterial for tissue regeneration in different body districts, including bone tissue. The interest in chitosan as a biomaterial stems from its ease of functionalization due to the presence of reactive groups, its antibacterial properties, its ease of processing to obtain porous matrices, and its inherent similarity to polysaccharides that constitute the human extracellular matrix, such as hyaluronic acid (HA). Here, chitosan was made to react with succinic anhydride to develop a negatively charged chitosan (SCS) that better mimics HA. FT-IR and NMR analyses confirmed the presence of the carboxylic groups in the modified polymer. Four different electrospun matrices were prepared: CS, SCS, a layer-by-layer matrix (LBL), and a matrix with both CS and SCS simultaneously electrospun (HYB). All the matrices containing SCS showed increased human osteoblast proliferation, mineralization, and gene expression, with the best results obtained with HYB compared to the control (CS). Moreover, the antibacterial potential of CS was preserved in all the SCS-containing matrices, and the pure SCS matrix demonstrated a significant reduction in bacterial proliferation of both S. aureus and E. coli.


Assuntos
Quitosana , Humanos , Quitosana/farmacologia , Quitosana/química , Tecidos Suporte/química , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Staphylococcus aureus , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Polissacarídeos , Antibacterianos/farmacologia
9.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542247

RESUMO

Throughout history, natural products have played a significant role in wound healing. Fibroblasts, acting as primary cellular mediators in skin wound healing, exhibit behavioral responses to natural compounds that can enhance the wound healing process. Identifying bioactive natural compounds and understanding their impact on fibroblast behavior offers crucial translational opportunities in the realm of wound healing. Modern scientific techniques have enabled a detailed understanding of how naturally derived compounds modulate wound healing by influencing fibroblast behavior. Specific compounds known for their wound healing properties have been identified. Engineered biomimetic compounds replicating the natural wound microenvironment are designed to facilitate normal healing. Advanced delivery methods operating at micro- and nano-scales have been developed to effectively deliver these novel compounds through the stratum corneum. This review provides a comprehensive summary of the efficacy of natural compounds in influencing fibroblast behavior for promoting wound regeneration and repair. Additionally, it explores biomimetic engineering, where researchers draw inspiration from nature to create materials and devices mimicking physiological cues crucial for effective wound healing. The review concludes by describing novel delivery mechanisms aimed at enhancing the bioavailability of natural compounds. Innovative future strategies involve exploring fibroblast-influencing pathways, responsive biomaterials, smart dressings with real-time monitoring, and applications of stem cells. However, translating these findings to clinical settings faces challenges such as the limited validation of biomaterials in large animal models and logistical obstacles in industrial production. The integration of ancient remedies with modern approaches holds promise for achieving effective and scar-free wound healing.


Assuntos
Biomimética , Cicatrização , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Cicatriz/patologia , Fibroblastos , Pele/patologia
10.
Carbohydr Polym ; 334: 122011, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553212

RESUMO

Injectable hydrogels have wide applications in clinical practice. However, the development of tough and bioadhesive ones based on biopolymers, along with biofriendly and robust crosslinking strategies, still represents a great challenge. Herein, we report an injectable hydrogel composed of maleimidyl alginate and pristine gelatin, for which the precursor solutions could self-crosslink via mild Michael-type addition without any catalyst or external energy upon mixing. This hydrogel is tough and bioadhesive, which can maintain intactness as well as adherence to the defect of porcine skin under fierce bending and twisting, warm water bath, and boiling water shower. Besides, it is biocompatible, bioactive and biodegradable, which could support the growth and remodeling of cells by affording an extracellular matrix-like environment. As a proof of application, we demonstrate that this hydrogel could significantly accelerate diabetic skin wound healing, thereby holding great potential in healthcare.


Assuntos
Materiais Biocompatíveis , Gelatina , Animais , Suínos , Materiais Biocompatíveis/farmacologia , Hidrogéis , Alginatos , Água
11.
J Biotechnol ; 385: 58-64, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458539

RESUMO

In this study, novel biomaterial that consisted entirely of bacterial products was developed with the approach of designing cost effective material for biomedical applications. With this aim, bacterial cellulose membranes (BCMs) which synthesized by Komagataeibacter intermedius were produced. Moreover, to impart antimicrobial properties to enhance the capacity of BCMs for biomedical usage, prodigiosin (PG) pigment of Serratia marcescens which presents wide range of antimicrobial activities was loaded to BCMs. Firstly, high yield of PG production was achieved, and then crude pigment was purified with silica gel column. The purified PG was characterized with thin layer chromatography and UV-visible spectrometry. The antimicrobial effect of the produced pigment on Gram-positive and negative bacteria and a yeast was investigated. The success of modification in PG-modified BCMs has been demonstrated by FTIR and SEM. Moreover, antimicrobial and antiadhesive ability of novel PG-BCMs were examined with disc diffusion and plate counting methods. As a result, it was established that PG-BCMs were able to inhibit the growth of all tested microorganisms. Furthermore, excellent antiadhesive effect was observed for the tested microorganisms with the inhibition rates of 82.05-96.25 %. Finally, cytotoxicity test with L929 cell line demonstrated that PG-BCM is biocompatible at a level that can be applied in in vivo studies.


Assuntos
Anti-Infecciosos , Prodigiosina , Prodigiosina/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Serratia marcescens/química , Serratia marcescens/metabolismo , Materiais Biocompatíveis/farmacologia , Celulose/metabolismo
12.
Nano Lett ; 24(10): 3257-3266, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426843

RESUMO

The extracellular matrix (ECM) orchestrates cell behavior and tissue regeneration by modulating biochemical and mechanical signals. Manipulating cell-material interactions is crucial for leveraging biomaterials to regulate cell functions. Yet, integrating multiple cues in a single material remains a challenge. Here, near-infrared (NIR)-controlled multifunctional hydrogel platforms, named PIC/CM@NPs, are introduced to dictate fibroblast behavior during wound healing by tuning the matrix oxidative stress and mechanical tensions. PIC/CM@NPs are prepared through cell adhesion-medicated assembly of collagen-like polyisocyanide (PIC) polymers and cell-membrane-coated conjugated polymer nanoparticles (CM@NPs), which closely mimic the fibrous structure and nonlinear mechanics of ECM. Upon NIR stimulation, PIC/CM@NPs composites enhance fibroblast cell proliferation, migration, cytokine production, and myofibroblast activation, crucial for wound closure. Moreover, they exhibit effective and toxin removal antibacterial properties, reducing inflammation. This multifunctional approach accelerates healing by 95%, highlighting the importance of integrating biochemical and biophysical cues in the biomaterial design for advanced tissue regeneration.


Assuntos
Materiais Biocompatíveis , Cicatrização , Espécies Reativas de Oxigênio , Materiais Biocompatíveis/farmacologia , Polímeros/farmacologia , Matriz Extracelular , Hidrogéis/farmacologia , Antibacterianos/farmacologia
13.
J Nanobiotechnology ; 22(1): 102, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468312

RESUMO

Bone tissue engineering scaffolds may provide a potential strategy for onlay bone grafts for oral implants. For determining the fate of scaffold biomaterials and osteogenesis effects, the host immune response is crucial. In the present study, bredigite (BRT) bioceramic scaffolds with an ordered arrangement structure (BRT-O) and a random morphology (BRT-R) were fabricated. The physicochemical properties of scaffolds were first characterized by scanning electron microscopy, mechanical test and micro-Fourier transform infrared spectroscopy. In addition, their osteogenic and immunomodulatory properties in an onlay grafting model were investigated. In vitro, the BRT-O scaffolds facilitated the macrophage polarization towards a pro-regenerative M2 phenotype, which subsequently facilitated the migration and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. In vivo, an onlay grafting model was successfully established in the cranium of rabbits. In addition, the BRT-O scaffolds grafted on rabbit cranium promoted bone regeneration and CD68 + CD206 + M2 macrophage polarization. In conclusion, the 3D-printed BRT-O scaffold presents as a promising scaffold biomaterial for onlay grafts by regulating the local immune microenvironment.


Assuntos
Amiantos Anfibólicos , Regeneração Óssea , Osteogênese , Animais , Coelhos , Tecidos Suporte/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Diferenciação Celular , Macrófagos , Impressão Tridimensional
14.
Cell Transplant ; 33: 9636897241235460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506426

RESUMO

This article presents a comprehensive review of the factors influencing the efficacy of mesenchymal stem cells (MSCs) transplantation and its association with platelet concentrates (PCs). It focuses on investigating the impact of PCs' composition, the age and health status of platelet donors, application methods, and environmental factors on the outcomes of relevant treatments. In addition, it delves into the strategies and mechanisms for optimizing MSCs transplantation with PCs, encompassing preconditioning and combined therapies. Furthermore, it provides an in-depth exploration of the signaling pathways and proteomic characteristics associated with preconditioning and emphasizes the efficacy and specific effects of combined therapy. The article also introduces the latest advancements in the application of biomaterials for optimizing regenerative medical strategies, stimulating scholarly discourse on this subject. Through this comprehensive review, the primary goal is to facilitate a more profound comprehension of the factors influencing treatment outcomes, as well as the strategies and mechanisms for optimizing MSCs transplantation and the application of biomaterials in regenerative medicine, offering theoretical guidance and practical references for related research and clinical practice.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Proteômica , Medicina Regenerativa , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Materiais Biocompatíveis/farmacologia
15.
ACS Appl Mater Interfaces ; 16(12): 14548-14560, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501200

RESUMO

The triply periodic minimal surface (TPMS) is a highly useful structure for bone tissue engineering owing to its nearly nonexistent average surface curvature, high surface area-to-volume ratio, and exceptional mechanical energy absorption properties. However, limited literature is available regarding bionic zirconia implants using the TPMS structure for bone regeneration. Herein, we employed the digital light processing (DLP) technology to fabricate four types of zirconia-based TPMS structures: P-cell, S14, IWP, and Gyroid. For cell proliferation, the four porous TPMS structures outperformed the solid zirconia group (P-cell > S14 > Gyroid > IWP > ZrO2). In vitro assessments on the biological responses and osteogenic properties of the distinct porous surfaces identified the IWP and Gyroid structures as promising candidates for future clinical applications of porous zirconia implants because of their superior osteogenic capabilities (IWP > Gyroid > S14 > P-cell > ZrO2) and mechanical properties (ZrO2 > IWP > Gyroid > S14 > P-cell). Furthermore, the physical properties of the IWP/Gyroid surface had more substantial effects on bone immune regulation by reducing macrophage M1 phenotype polarization while increasing M2 phenotype polarization compared with the solid zirconia surface. Additionally, the IWP and Gyroid groups exhibited enhanced immune osteogenesis and angiogenesis abilities. Collectively, these findings highlight the substantial impact of topology on bone/angiogenesis and immune regulation in promoting bone integration.


Assuntos
60489 , Osseointegração , Zircônio , Porosidade , Materiais Biocompatíveis/farmacologia , Impressão Tridimensional
16.
Biofabrication ; 16(2)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38507799

RESUMO

The application of additive manufacturing (AM) technology plays a significant role in various fields, incorporating a wide range of cutting-edge technologies such as aerospace, medical treatment, electronic information, and materials. It is currently widely adopted for medical services, national defense, and industrial manufacturing. In recent years, AM has also been extensively employed to produce bone scaffolds and implant materials. Through AM, products can be manufactured without being constrained by complex internal structures. AM is particularly advantageous in the production of macroscopically irregular and microscopically porous biomimetic bone scaffolds, with short production cycles required. In this paper, AM commonly used to produce bone scaffolds and orthopedic implants is overviewed to analyze the different materials and structures adopted for AM. The applications of antibacterial bone scaffolds and bone scaffolds in biologically relevant animal models are discussed. Also, the influence on the comprehensive performance of product mechanics, mass transfer, and biology is explored. By identifying the reasons for the limited application of existing AM in the biomedical field, the solutions are proposed. This study provides an important reference for the future development of AM in the field of orthopedic healthcare. In conclusion, various AM technologies, the requirements of bone scaffolds and the important role of AM in building bridges between biomaterials, additives, and bone tissue engineering scaffolds are described and highlighted. Nevertheless, more caution should be exercised when designing bone scaffolds and conducting in vivo trials, due to the lack of standardized processes, which prevents the accuracy of results and reduces the reliability of information.


Assuntos
Materiais Biocompatíveis , Tecidos Suporte , Animais , Reprodutibilidade dos Testes , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Tecidos Suporte/química , Engenharia Tecidual , Osso e Ossos
17.
ACS Appl Bio Mater ; 7(4): 2389-2401, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38502100

RESUMO

Graphene-based nanomaterials, renowned for their outstanding electrical conductivity, have been extensively studied as electroconductive biomaterials (ECBs) for electrically stimulated tissue regeneration. However, using eco-friendly reducing agents like l-ascorbic acid (l-Aa) can result in lower conductive properties in these ECBs, limiting their full potential for smooth charge transfer in living tissues. Moreover, creating a flexible biomaterial scaffold using these materials that accurately mimics a specific tissue microarchitecture, such as nerves, poses additional challenges. To address these issues, this study developed a microfibrous scaffold of Bombyx mori (Bm) silk fibroin uniformly coated with graphene nanoplatelets (GNPs) through a vacuum coating method. The scaffold's electrical conductivity was optimized by varying the reduction period using l-Aa. The research systematically investigated how different reduction periods impact scaffold properties, focusing on electrical conductivity and its significance on electrically stimulated axonal growth in PC12 cells. Results showed that a 48 h reduction significantly increased surface electrical conductivity by 100-1000 times compared to a shorter or no reduction process. l-Aa contributed to stabilizing the reduced GNPs, demonstrated by a slow degradation profile and sustained conductivity even after 60 days in a proteolytic environment. ß (III) tubulin immunostaining of PC12 cells on varied silk:GNP scaffolds under pulsed electrical stimulation (ES, 50 Hz frequency, 1 ms pulse width, and amplitudes of 100 and 300 mV/cm) demonstrates accelerated axonal growth on scaffolds exhibiting higher conductivity. This is supported by upregulated intracellular Ca2+ dynamics immediately after ES on the scaffolds with higher conductivity, subjected to a prolonged reduction period. The study showcases a sustainable reduction approach using l-Aa in combination with natural Bm silk fibroin to create a highly conductive, mechanically robust, and stable silk:GNP-based aligned fibrous scaffold. These scaffolds hold promise for functional regeneration in electrically excitable tissues such as nerves, cardiac tissue, and muscles.


Assuntos
Bombyx , Fibroínas , Grafite , Ratos , Animais , Seda , Tecidos Suporte , Grafite/farmacologia , Fibroínas/farmacologia , Materiais Biocompatíveis/farmacologia , Condutividade Elétrica
18.
ACS Appl Mater Interfaces ; 16(13): 15993-16002, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509001

RESUMO

Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care. To this aim, we first entrap cell-free extracts (CFEs) from Escherichia coli containing the transcription-translation machinery, together with plasmid DNA encoding the super folded green fluorescence protein (sGFP) as a model protein, into hydrogels using various preparation methods. Agarose hydrogels result in the most suitable biomaterials to confine the protein synthesis system, demonstrating efficient sGFP production and diffusion from the core to the surface of the hydrogel. Freeze-drying (FD) of agarose hydrogels still allows for the synthesis and diffusion of sGFP, yielding a more attractive biomaterial for its reconstitution and implementation at the point of care. FD-agarose hydrogels are biocompatible in vitro, allowing for the colonization of cell microenvironments along with cell proliferation. Implantation assays of this biomaterial in a preclinical mouse model proved the feasibility of this protein synthesis approach in an in vivo context and indicated that the physical properties of the biomaterials influence their immune responses. This work introduces a promising avenue for biomaterial fabrication, enabling the in vivo synthesis and targeted delivery of proteins and opening new paths for advanced protein therapeutic approaches based on biocompatible biomaterials.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Animais , Camundongos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Hidrogéis/uso terapêutico , Sefarose , Próteses e Implantes
19.
Biomacromolecules ; 25(4): 2338-2347, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499995

RESUMO

Bone is a frequent site for metastatic development in various cancer types, including breast cancer, with a grim prognosis due to the distinct bone environment. Despite considerable advances, our understanding of the underlying processes leading to bone metastasis progression remains elusive. Here, we applied a bioactive three-dimensional (3D) model capable of mimicking the endosteal bone microenvironment. MDA-MB-231 and MCF7 breast cancer cells were cultured on the scaffolds, and their behaviors and the effects of the biomaterial on the cells were examined over time. We demonstrated that close interactions between the cells and the biomaterial affect their proliferation rates and the expression of c-Myc, cyclin D, and KI67, leading to cell cycle arrest. Moreover, invasion assays revealed increased invasiveness within this microenvironment. Our findings suggest a dual role for endosteal mimicking signals, influencing cell fate and potentially acting as a double-edged sword, shuttling between cell cycle arrest and more active, aggressive states.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Materiais Biocompatíveis/farmacologia , Fenótipo , Proliferação de Células , Microambiente Tumoral/genética
20.
Biomacromolecules ; 25(4): 2286-2301, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502906

RESUMO

Bone defects show a slow rate of osteoconduction and imperfect reconstruction, and the current treatment strategies to treat bone defects suffer from limitations like immunogenicity, lack of cell adhesion, and the absence of osteogenic activity. In this context, bioactive supramolecular peptides and peptide gels offer unique opportunities to develop biomaterials that can play a dominant role in the biomineralization of bone tissues and promote bone formation. In this article, we have demonstrated the potential of six tetrapeptides for specific binding to hydroxyapatite (HAp), a major inorganic component of the bone, and their effect on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs). We adopted a simplistic approach of rationally designing amphiphilic peptides by incorporating amino acids, Ser, pSer, Pro, Hyp, Asp, and Glu, which are present in either collagenous or noncollagenous proteins and render properties like antioxidant, calcification, and mineralization. A total of six tetrapeptides, Trp-Trp-His-Ser (WWHS), Trp-Trp-His-pSer (WWHJ), Trp-Trp-His-Pro (WWHP), Trp-Trp-His-Hyp (WWHO), Trp-Trp-His-Asp (WWHD), and Trp-Trp-His-Glu (WWHE), were synthesized. Four peptides were found to self-assemble into nanofibrillar gels resembling the extracellular matrix (ECM), and the remaining two peptides (WWHJ, WWHP) self-assembled into nanorods. The peptides showed excellent cell adhesion, encapsulation, proliferation, and migration and induced the differentiation of mesenchymal stem cells (MSCs), as evident from the enhanced mineralization, resulting from the upregulation of osteogenic markers, RUNX 2, COL I, OPN, and OCN, alkaline phosphatase (ALP) production, and calcium deposition. The peptides also induced the downregulation of inflammatory markers, TNF-α and iNOS, and the upregulation of the anti-inflammatory marker, IL-10, resulting in M2 macrophage polarization. RANKL and TRAP genes were downregulated in a coculture system of MC3T3-E1 and RAW 264.7 cells, implying that peptides promote osteogenesis and inhibit osteoclastogenesis. The peptide-based biomaterials developed in this work can enhance bone regeneration capacity and show strong potential as scaffolds for bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Aminoácidos/metabolismo , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Diferenciação Celular , Durapatita/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Géis/farmacologia , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...